Patient Access KPIs & Reporting

Patient Access KPIs & Reporting

KPI Summary

KPI ID KPI Name Formula (Conceptual) Target Data Source Frequency
KPI-PAC-001 Eligibility Verification Rate encounters with eligibility_verified_before_service / total_encounters × 100 ≥ 98% eligibility_checks, eligibility_responses, encounters Daily / Monthly
KPI-PAC-002 Prior Auth Approval Rate approved prior_authorizations / total prior_auth_requests × 100 ≥ 85% prior_authorizations, prior_auth_requests Weekly / Monthly
KPI-PAC-003 Prior Auth Turnaround Time AVG(approved_date - requested_date) ≤ 3 business days prior_authorizations, prior_auth_requests Weekly / Monthly
KPI-PAC-004 Pre-Registration Completion Rate appointments with pre_registration_complete / total_scheduled_appointments × 100 ≥ 70% pre_registration_records, appointments Daily / Weekly
KPI-PAC-005 Cost Estimate Accuracy AVG(ABS(actual_patient_responsibility - estimated_patient_responsibility) / actual_patient_responsibility) × 100 Within 20% variance cost_estimates, billing patient_invoices (external) Monthly
KPI-PAC-006 Authorization-Related Denial Rate claims denied for no_auth / total_claims × 100 ≤ 2% billing_claims, claim_responses, prior_authorizations Monthly
KPI-PAC-007 Referral Completion Rate referrals where patient_attended / total_referrals × 100 ≥ 75% referrals, appointments, encounters Monthly
KPI-PAC-008 Financial Clearance Rate encounters financially_cleared_before_service / total_encounters × 100 ≥ 90% eligibility_checks, prior_authorizations, pre_registration_records, encounters Daily / Monthly

Note: Some tables (e.g., billing_claims, patient_invoices) are owned by other RCM modules and referenced here conceptually; exact schemas are defined in their respective 03-data-specifications files.


KPI Definitions

KPI-PAC-001: Eligibility Verification Rate

Definition

Percentage of encounters for which insurance eligibility was successfully verified before the start of service. This measures front-end discipline in verifying coverage and is a key driver of reduced denials and patient complaints in UAE payer environments (DHA eClaimLink, DOH eClaims).

Calculation Formula

Assumptions:

  • encounters.encounter_id (from scheduling)
  • eligibility_checks.encounter_id (FK to encounters.encounter_id, nullable)
  • eligibility_checks.status IN ('success', 'failed', 'pending', …)
  • eligibility_checks.check_datetime
  • encounters.service_start_datetime
SQL
SELECT
    (COUNT(CASE
              WHEN ec.check_id IS NOT NULL
                   AND ec.status = 'success'
                   AND ec.check_datetime <= e.service_start_datetime
            THEN 1 END) * 100.0
     / NULLIF(COUNT(*), 0)) AS eligibility_verification_rate
FROM encounters e
LEFT JOIN eligibility_checks ec
       ON ec.encounter_id = e.encounter_id
      AND ec.check_datetime = (
            SELECT MAX(ec2.check_datetime)
            FROM eligibility_checks ec2
            WHERE ec2.encounter_id = e.encounter_id
      )
WHERE e.service_start_datetime >= :start_date
  AND e.service_start_datetime < :end_date;

Target / Benchmark

Metric Target Source / Rationale
Eligibility Verification Rate ≥ 98% Internal RCM best practice; aligned with DOH/DHA focus on reducing technical denials

Data Source

  • encounters.encounter_id, encounters.service_start_datetime, encounters.facility_id, encounters.department_id, encounters.provider_id
  • eligibility_checks.check_id, eligibility_checks.encounter_id, eligibility_checks.payer_id, eligibility_checks.plan_id, eligibility_checks.check_datetime, eligibility_checks.status

Dimensions / Filters

  • Time: day, week, month, quarter, year
  • Facility: encounters.facility_id
  • Department / clinic: encounters.department_id
  • Provider: encounters.provider_id
  • Payer: eligibility_checks.payer_id
  • Visit type: outpatient / inpatient / day surgery (from encounter_details)

Visualization

  • Primary: Line chart (monthly trend) with 98% target line.
  • Drill-down: Bar chart by department and payer.
  • Detail: Table of encounters without successful eligibility before service.

Alert Thresholds

  • Warning: < 98% for any facility-month.
  • Critical: < 95% for any facility-month or < 90% for any department-month.
  • Notifications:
  • Registration Supervisor (facility-level warnings)
  • Patient Access Manager and RCM Director (critical)
  • Automated worklist of encounters without eligibility for same-day follow-up.

KPI-PAC-002: Prior Auth Approval Rate

Definition

Percentage of prior authorization requests that are approved by payers (DHA, DOH, and private payers). Indicates effectiveness of documentation and adherence to payer rules.

Calculation Formula

Assumptions:

  • prior_authorizations.auth_id
  • prior_authorizations.auth_status ('approved', 'denied', 'pending', 'cancelled', …)
  • prior_auth_requests.request_id, prior_auth_requests.auth_id (multiple submissions per auth possible)
  • We count unique auth_id as a “request episode”.
SQL
SELECT
    (COUNT(CASE WHEN pa.auth_status = 'approved' THEN 1 END) * 100.0
     / NULLIF(COUNT(*), 0)) AS prior_auth_approval_rate
FROM prior_authorizations pa
WHERE pa.requested_date >= :start_date
  AND pa.requested_date < :end_date;

Optionally, to restrict denominator to completed decisions:

SQL
AND pa.auth_status IN ('approved', 'denied')

Target / Benchmark

Metric Target Source / Rationale
Prior Auth Approval Rate ≥ 85% Internal RCM benchmark; aligns with UAE payer expectations for well-documented auths

Data Source

  • prior_authorizations.auth_id, patient_id, encounter_id, payer_id, auth_status, requested_date, approved_date, denied_date, service_codes, icd10_codes
  • prior_auth_requests.request_id, auth_id, submission_datetime, submission_channel, payer_response, response_datetime

Dimensions / Filters

  • Time: by requested_date or approved_date
  • Facility / department (via encounters)
  • Requesting provider: prior_authorizations.requesting_provider_id
  • Payer: prior_authorizations.payer_id
  • Service category (derived from service_codes / authorization service master)
  • Submission channel: prior_auth_requests.submission_channel (eClaimLink, DOH eClaims, portal, fax)

Visualization

  • Primary: Bar chart by payer (approval rate).
  • Trend: Line chart (monthly approval rate).
  • Drill-down: Stacked bar (approved vs denied vs pending) by service category.

Alert Thresholds

  • Warning: Approval rate < 80% for any payer-month.
  • Critical: Approval rate < 70% overall or for a top-5 payer.
  • Notifications:
  • Authorization Specialist team lead (payer-specific warnings)
  • Patient Access Manager and Medical Director (critical, for clinical documentation review).

KPI-PAC-003: Prior Auth Turnaround Time

Definition

Average time from initial prior authorization request submission to final approval. Measures operational efficiency and payer responsiveness; critical for scheduling elective procedures.

Calculation Formula

Assumptions:

  • Use prior_authorizations.requested_date and approved_date.
  • Only include records with auth_status = 'approved' and both timestamps populated.
SQL
SELECT
    AVG(TIMESTAMPDIFF(HOUR, pa.requested_date, pa.approved_date)) AS avg_auth_tat_hours
FROM prior_authorizations pa
WHERE pa.auth_status = 'approved'
  AND pa.requested_date >= :start_date
  AND pa.requested_date < :end_date;

To express in business days (8-hour days):

SQL
SELECT
    AVG(TIMESTAMPDIFF(HOUR, pa.requested_date, pa.approved_date) / 8.0) AS avg_auth_tat_business_days
FROM prior_authorizations pa
WHERE pa.auth_status = 'approved'
  AND pa.requested_date >= :start_date
  AND pa.requested_date < :end_date;

Target / Benchmark

Metric Target Source / Rationale
Avg Prior Auth TAT ≤ 3 business days Internal SLA; aligned with UAE payer service expectations

Data Source

  • prior_authorizations.auth_id, payer_id, auth_status, requested_date, approved_date
  • Optional: prior_auth_requests.submission_datetime, response_datetime for more granular TAT stages.

Dimensions / Filters

  • Time: by requested_date
  • Facility / department (via encounters)
  • Payer
  • Service category (e.g., imaging, surgery, physiotherapy)
  • Submission channel

Visualization

  • Primary: Line chart of average TAT (business days) by month, with 3-day target line.
  • Secondary: Box-and-whisker plot by payer.
  • Detail: Table of outliers (e.g., TAT > 7 business days).

Alert Thresholds

  • Warning: Average TAT > 3 business days for any payer-month.
  • Critical: Average TAT > 5 business days overall or > 7 days for high-volume services.
  • Notifications:
  • Authorization Supervisor (warnings)
  • Patient Access Manager and Contracting team (critical, for payer escalation).

KPI-PAC-004: Pre-Registration Completion Rate

Definition

Percentage of scheduled appointments for which pre-registration (demographics, insurance, consents) is completed before the day of service. Supports smoother check-in and better financial clearance.

Calculation Formula

Assumptions:

  • pre_registration_records.prereg_id, appointment_id, status, completed_datetime
  • pre_registration_records.status values: 'completed', 'in_progress', 'not_started', 'cancelled'
  • appointments.appointment_id, appointments.scheduled_start_datetime
SQL
SELECT
    (COUNT(CASE
              WHEN pr.status = 'completed'
                   AND pr.completed_datetime < a.scheduled_start_datetime
            THEN 1 END) * 100.0
     / NULLIF(COUNT(*), 0)) AS pre_registration_completion_rate
FROM appointments a
LEFT JOIN pre_registration_records pr
       ON pr.appointment_id = a.appointment_id
WHERE a.scheduled_start_datetime >= :start_date
  AND a.scheduled_start_datetime < :end_date
  AND a.status NOT IN ('cancelled', 'no_show');

Target / Benchmark

Metric Target Source / Rationale
Pre-Registration Completion Rate ≥ 70% Internal operational target for UAE outpatient workflows

Data Source

  • appointments.appointment_id, scheduled_start_datetime, status, facility_id, department_id, provider_id, visit_type
  • pre_registration_records.prereg_id, appointment_id, completed_datetime, status, demographics_complete, insurance_verified, auth_verified, consent_obtained

Dimensions / Filters

  • Time: by appointment date
  • Facility / department
  • Provider
  • Visit type (e.g., new patient, follow-up, procedure)
  • Channel: portal vs phone vs onsite (if tracked via pre_registration_records.request_source)

Visualization

  • Primary: Line chart (weekly trend) with target line.
  • Drill-down: Bar chart by department and visit type.
  • Detail: Worklist-style table of upcoming appointments with incomplete pre-registration.

Alert Thresholds

  • Warning: Rate < 70% for any department-week.
  • Critical: Rate < 60% overall or < 50% for high-revenue service lines (e.g., surgery).
  • Notifications:
  • Registration Supervisor (department-level warnings)
  • Patient Access Manager (critical).

KPI-PAC-005: Cost Estimate Accuracy

Definition

Average percentage variance between estimated and actual patient responsibility for services, for encounters where both an estimate and final bill exist. Measures quality of cost estimation and transparency to patients.

Calculation Formula

Assumptions:

  • cost_estimates.estimate_id, encounter_id, estimated_patient_responsibility
  • Billing module table patient_invoices (or equivalent) with encounter_id, actual_patient_responsibility
  • Exclude cases where actual_patient_responsibility = 0 to avoid division by zero.
SQL
SELECT
    AVG(
        ABS(pi.actual_patient_responsibility - ce.estimated_patient_responsibility)
        / NULLIF(pi.actual_patient_responsibility, 0)
    ) * 100.0 AS avg_cost_estimate_variance_pct
FROM cost_estimates ce
JOIN patient_invoices pi
     ON pi.encounter_id = ce.encounter_id
WHERE ce.estimate_datetime >= :start_date
  AND ce.estimate_datetime < :end_date
  AND ce.acknowledged_by_patient = TRUE;

Target / Benchmark

Metric Target Source / Rationale
Avg variance Within 20% Internal RCM target; supports UAE patient transparency goals
High variance outliers < 10% of cases > 30% Internal quality objective

Data Source

  • cost_estimates.estimate_id, encounter_id, payer_id, estimated_patient_responsibility, estimate_datetime, acknowledged_by_patient
  • Billing: patient_invoices.encounter_id, actual_patient_responsibility, invoice_date

Dimensions / Filters

  • Time: by estimate date or invoice date
  • Facility / department
  • Payer / plan
  • Service category (from planned_cpt_codes)
  • Self-pay vs insured

Visualization

  • Primary: Line chart of average variance (%) by month.
  • Secondary: Histogram of variance distribution.
  • Detail: Table of high-variance cases (>30%) for review.

Alert Thresholds

  • Warning: Average variance > 20% in any month.
  • Critical: Average variance > 30% or > 10% of cases with variance > 50%.
  • Notifications:
  • Financial Counseling Manager and Patient Access Manager.
  • Finance Director for persistent critical deviations.

Definition

Percentage of claims denied due to missing, invalid, or expired prior authorization. This is a key technical denial metric and directly linked to Patient Access performance.

Calculation Formula

Assumptions:

  • billing_claims.claim_id, encounter_id, payer_id
  • claim_responses.claim_id, denial_reason_code
  • Denial reason 'no_auth' (or mapped codes from DHA eClaimLink / DOH eClaims).
SQL
SELECT
    (COUNT(CASE
              WHEN cr.denial_reason_code = 'no_auth'
            THEN 1 END) * 100.0
     / NULLIF(COUNT(*), 0)) AS auth_related_denial_rate
FROM billing_claims bc
JOIN claim_responses cr
     ON cr.claim_id = bc.claim_id
WHERE bc.submission_date >= :start_date
  AND bc.submission_date < :end_date;

Optionally restrict denominator to denied claims only or all submitted claims depending on organizational definition. Above uses all claims with a response.

Target / Benchmark

Metric Target Source / Rationale
Authorization-Related Denial Rate ≤ 2% Internal RCM best practice; aligned with UAE payer expectations

Data Source

  • billing_claims.claim_id, encounter_id, payer_id, submission_date
  • claim_responses.claim_id, denial_reason_code, response_date
  • prior_authorizations.encounter_id, auth_status, valid_from, valid_to

Dimensions / Filters

  • Time: by claim submission date
  • Facility / department (via encounters)
  • Payer
  • Service category
  • Presence of prior auth (join to prior_authorizations)

Visualization

  • Primary: Line chart (monthly denial rate) with 2% target line.
  • Secondary: Bar chart by payer and department.
  • Detail: Table of denied claims with missing/invalid auth details.

Alert Thresholds

  • Warning: > 2% for any payer-month.
  • Critical: > 5% overall or for a top-3 payer.
  • Notifications:
  • Patient Access Manager, Billing Manager.
  • Contracting / Policy & Contract Management team for payer-specific issues.

KPI-PAC-007: Referral Completion Rate

Definition

Percentage of referrals that result in at least one attended appointment. Measures effectiveness of referral coordination and patient follow-through.

Calculation Formula

Assumptions:

  • referrals.referral_id, patient_id, status ('active', 'completed', 'expired', 'cancelled'), valid_from, valid_to
  • appointments.appointment_id, patient_id, referral_id (FK, if available), status ('attended', 'no_show', 'cancelled')
  • If referral_id not stored on appointment, join by patient and specialist provider within validity window.
SQL
SELECT
    (COUNT(DISTINCT CASE
                       WHEN EXISTS (
                           SELECT 1
                           FROM appointments a
                           WHERE a.referral_id = r.referral_id
                             AND a.status = 'attended'
                       )
                    THEN r.referral_id END) * 100.0
     / NULLIF(COUNT(DISTINCT r.referral_id), 0)) AS referral_completion_rate
FROM referrals r
WHERE r.valid_from >= :start_date
  AND r.valid_from < :end_date;

Target / Benchmark

Metric Target Source / Rationale
Referral Completion Rate ≥ 75% Internal care coordination benchmark

Data Source

  • referrals.referral_id, patient_id, referring_provider_id, specialist_provider_id, payer_id, service_type, authorized_visits, used_visits, valid_from, valid_to, status
  • appointments.appointment_id, patient_id, referral_id, specialist_provider_id, scheduled_start_datetime, status

Dimensions / Filters

  • Time: by referral creation or validity start
  • Referring provider / clinic
  • Specialist provider / department
  • Payer
  • Service type (e.g., cardiology, orthopedics)

Visualization

  • Primary: Bar chart by specialty (completion rate).
  • Trend: Line chart by month.
  • Detail: Table of referrals without attended visits, for follow-up.

Alert Thresholds

  • Warning: Completion rate < 75% for any specialty-quarter.
  • Critical: Completion rate < 60% overall or for high-priority specialties.
  • Notifications:
  • Referral Management team, Patient Access Manager.
  • Quality / Care Coordination leads for persistent issues.

KPI-PAC-008: Financial Clearance Rate

Definition

Percentage of encounters that are fully financially cleared (eligibility verified, required prior auth/referral obtained, and financial arrangements in place if needed) before service start. This is the primary composite KPI for Patient Access.

Calculation Formula

Assumptions:

  • encounters.encounter_id, service_start_datetime
  • Derived flag encounters.financially_cleared_before_service or computed via joins:
  • Successful eligibility check before service.
  • No required prior auth/referral missing.
  • For self-pay/high OOP, financial counseling completed (optional).

If a boolean field exists:

SQL
SELECT
    (COUNT(CASE
              WHEN e.financially_cleared_before_service = TRUE
            THEN 1 END) * 100.0
     / NULLIF(COUNT(*), 0)) AS financial_clearance_rate
FROM encounters e
WHERE e.service_start_datetime >= :start_date
  AND e.service_start_datetime < :end_date;

If computed on the fly (simplified):

SQL
SELECT
    (COUNT(CASE
              WHEN ec.check_id IS NOT NULL
                   AND ec.status = 'success'
                   AND ec.check_datetime <= e.service_start_datetime
                   AND (pa_required = 0 OR (pa_required = 1 AND pa_ok = 1))
            THEN 1 END) * 100.0
     / NULLIF(COUNT(*), 0)) AS financial_clearance_rate
FROM encounters e
LEFT JOIN eligibility_checks ec
       ON ec.encounter_id = e.encounter_id
      AND ec.check_datetime = (
            SELECT MAX(ec2.check_datetime)
            FROM eligibility_checks ec2
            WHERE ec2.encounter_id = e.encounter_id
      )
-- pa_required / pa_ok derived via join to coverage rules and prior_authorizations
WHERE e.service_start_datetime >= :start_date
  AND e.service_start_datetime < :end_date;

(Implementation should materialize a financially_cleared_before_service flag during pre-registration/check-in to avoid complex runtime logic.)

Target / Benchmark

Metric Target Source / Rationale
Financial Clearance Rate ≥ 90% Internal RCM target; supports low denial rates and patient satisfaction

Data Source

  • encounters.encounter_id, service_start_datetime, facility_id, department_id, provider_id, financially_cleared_before_service (if implemented)
  • eligibility_checks, prior_authorizations, referrals, pre_registration_records, financial_counseling_records (for underlying logic)

Dimensions / Filters

  • Time: by service date
  • Facility / department
  • Provider
  • Payer / plan
  • Visit type (elective vs emergency)

Visualization

  • Primary: Gauge chart (current month) with 90% target.
  • Trend: Line chart by month.
  • Drill-down: Bar chart by department and payer.

Alert Thresholds

  • Warning: < 90% for any facility-month.
  • Critical: < 85% overall or < 80% for elective procedures.
  • Notifications:
  • Patient Access Manager, RCM Director.
  • Department heads for underperforming areas.

Standard Reports

Report ID Report Name Purpose Audience Frequency Format
RPT-PAC-001 Patient Access KPI Dashboard Real-time view of key KPIs (eligibility, auth, pre-reg, clearance) Patient Access Manager, RCM Leadership Real-time / Daily Interactive dashboard (HTML)
RPT-PAC-002 Eligibility Verification Exception Report List encounters without successful eligibility before service for follow-up Registration Supervisors, Billing Daily HTML + CSV/Excel export
RPT-PAC-003 Prior Authorization Performance by Payer Monitor auth approval rates and TAT by payer and service line Authorization Team, Contracting Weekly / Monthly PDF + Excel
RPT-PAC-004 Pre-Registration Worklist & Completion Track upcoming appointments with pre-registration status and completion rates Registration Clerks, Supervisors Daily Interactive + Excel
RPT-PAC-005 Cost Estimate Accuracy Analysis Compare estimates vs actuals, identify high-variance cases Financial Counselors, Finance Monthly PDF + Excel
RPT-PAC-006 Authorization-Related Denials Summary Analyze denials due to missing/invalid auth by payer, department, and provider Billing, Patient Access Manager Monthly PDF + Excel
RPT-PAC-007 Referral Utilization & Completion Monitor referral completion and utilization of authorized visits Referral Coordinators, Clinical Leads Monthly HTML + Excel
RPT-PAC-008 Financial Clearance Compliance by Department Track financial clearance rate and drivers (eligibility, auth, counseling) per department Patient Access Manager, Department Heads Monthly Dashboard + PDF snapshot
RPT-PAC-009 UAE Payer Connectivity & Error Log Monitor eClaimLink/DOH eClaims connectivity, error codes, and retry outcomes IT / RCM Integration Team Weekly / On-demand HTML + CSV
RPT-PAC-010 PDPL Access & Audit Log (Patient Access) Provide audit trail of access to financial/insurance data for PDPL compliance DPO, Compliance Officer On-demand / Quarterly PDF + CSV

Dashboard Wireframe

The following HTML mockup represents the Patient Access Analytics dashboard (aligned with screen SCR-PAC-008).

Show HTML code
HTML
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Patient Access Analytics Dashboard</title>
</head>
<body style="font-family: Arial, sans-serif; margin: 0; padding: 0; background:#f5f5f5;">
  <header style="background:#004c97; color:#fff; padding:12px 20px;">
    <h1 style="margin:0; font-size:20px;">Patient Access Analytics</h1>
    <div style="margin-top:6px; font-size:12px;">
      <span>Facility:</span>
      <select style="margin-right:10px;">
        <option>All Facilities</option>
        <option>Dubai General Hospital</option>
        <option>Abu Dhabi Medical Center</option>
      </select>
      <span>Period:</span>
      <select style="margin-right:10px;">
        <option>This Month</option>
        <option>Last Month</option>
        <option>Last 3 Months</option>
        <option>Custom...</option>
      </select>
      <span>Payer:</span>
      <select>
        <option>All Payers</option>
        <option>Daman</option>
        <option>THIQA</option>
        <option>Oman Insurance</option>
      </select>
    </div>
  </header>

  <main style="padding:15px;">
    <!-- KPI cards row -->
    <section style="display:flex; gap:10px; margin-bottom:15px;">
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; border-top:3px solid #2e7d32;">
        <div style="font-size:12px; color:#666;">Eligibility Verification Rate</div>
        <div style="font-size:24px; font-weight:bold;">98.6%</div>
        <div style="font-size:11px; color:#2e7d32;">Target ≥ 98%</div>
      </div>
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; border-top:3px solid #1976d2;">
        <div style="font-size:12px; color:#666;">Financial Clearance Rate</div>
        <div style="font-size:24px; font-weight:bold;">91.3%</div>
        <div style="font-size:11px; color:#1976d2;">Target ≥ 90%</div>
      </div>
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; border-top:3px solid #f9a825;">
        <div style="font-size:12px; color:#666;">Prior Auth Approval Rate</div>
        <div style="font-size:24px; font-weight:bold;">83.9%</div>
        <div style="font-size:11px; color:#f57f17;">Target ≥ 85%</div>
      </div>
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; border-top:3px solid #c62828;">
        <div style="font-size:12px; color:#666;">Auth-Related Denial Rate</div>
        <div style="font-size:24px; font-weight:bold;">2.7%</div>
        <div style="font-size:11px; color:#c62828;">Target ≤ 2%</div>
      </div>
    </section>

    <!-- Charts row -->
    <section style="display:flex; gap:10px; margin-bottom:15px;">
      <div style="flex:2; background:#fff; padding:10px; border-radius:4px; min-height:220px;">
        <h2 style="margin:0 0 5px 0; font-size:14px;">Financial Clearance & Eligibility Trend</h2>
        <div style="font-size:11px; color:#666; margin-bottom:5px;">Monthly trend for last 12 months</div>
        <div style="border:1px dashed #ccc; height:170px; text-align:center; padding-top:70px; color:#999; font-size:12px;">
          Line chart placeholder (Financial Clearance %, Eligibility %, Targets)
        </div>
      </div>
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; min-height:220px;">
        <h2 style="margin:0 0 5px 0; font-size:14px;">Pre-Registration Completion by Department</h2>
        <div style="border:1px dashed #ccc; height:190px; text-align:center; padding-top:80px; color:#999; font-size:12px;">
          Bar chart placeholder (Departments vs Pre-Reg %)
        </div>
      </div>
    </section>

    <!-- Second charts row -->
    <section style="display:flex; gap:10px; margin-bottom:15px;">
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; min-height:220px;">
        <h2 style="margin:0 0 5px 0; font-size:14px;">Prior Auth TAT by Payer</h2>
        <div style="border:1px dashed #ccc; height:190px; text-align:center; padding-top:80px; color:#999; font-size:12px;">
          Box/column chart placeholder (Business days by payer)
        </div>
      </div>
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; min-height:220px;">
        <h2 style="margin:0 0 5px 0; font-size:14px;">Cost Estimate Accuracy Distribution</h2>
        <div style="border:1px dashed #ccc; height:190px; text-align:center; padding-top:80px; color:#999; font-size:12px;">
          Histogram placeholder (Variance buckets)
        </div>
      </div>
      <div style="flex:1; background:#fff; padding:10px; border-radius:4px; min-height:220px;">
        <h2 style="margin:0 0 5px 0; font-size:14px;">Referral Completion by Specialty</h2>
        <div style="border:1px dashed #ccc; height:190px; text-align:center; padding-top:80px; color:#999; font-size:12px;">
          Bar chart placeholder (Specialty vs Completion %)
        </div>
      </div>
    </section>

    <!-- Exceptions table -->
    <section style="background:#fff; padding:10px; border-radius:4px;">
      <div style="display:flex; justify-content:space-between; align-items:center;">
        <h2 style="margin:0; font-size:14px;">Exceptions Requiring Attention</h2>
        <button style="font-size:11px; padding:4px 8px;">Export CSV</button>
      </div>
      <table style="width:100%; border-collapse:collapse; margin-top:8px; font-size:11px;">
        <thead>
          <tr style="background:#eee;">
            <th style="border:1px solid #ddd; padding:4px;">Encounter ID</th>
            <th style="border:1px solid #ddd; padding:4px;">Patient</th>
            <th style="border:1px solid #ddd; padding:4px;">Service Date</th>
            <th style="border:1px solid #ddd; padding:4px;">Payer</th>
            <th style="border:1px solid #ddd; padding:4px;">Issue</th>
            <th style="border:1px solid #ddd; padding:4px;">Department</th>
            <th style="border:1px solid #ddd; padding:4px;">Owner</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td style="border:1px solid #ddd; padding:4px;">ENC-2026-00123</td>
            <td style="border:1px solid #ddd; padding:4px;">Ahmed Al-Maktoum</td>
            <td style="border:1px solid #ddd; padding:4px;">07-Feb-2026</td>
            <td style="border:1px solid #ddd; padding:4px;">Daman</td>
            <td style="border:1px solid #ddd; padding:4px;">No eligibility check</td>
            <td style="border:1px solid #ddd; padding:4px;">Orthopedics</td>
            <td style="border:1px solid #ddd; padding:4px;">Registration</td>
          </tr>
          <tr>
            <td style="border:1px solid #ddd; padding:4px;">ENC-2026-00456</td>
            <td style="border:1px solid #ddd; padding:4px;">Fatima Al-Nahyan</td>
            <td style="border:1px solid #ddd; padding:4px;">06-Feb-2026</td>
            <td style="border:1px solid #ddd; padding:4px;">THIQA</td>
            <td style="border:1px solid #ddd; padding:4px;">Auth expired</td>
            <td style="border:1px solid #ddd; padding:4px;">Imaging</td>
            <td style="border:1px solid #ddd; padding:4px;">Auth Team</td>
          </tr>
        </tbody>
      </table>
    </section>
  </main>
</body>
</html>

Regulatory Reports

This section focuses on UAE-specific regulatory and compliance reporting related to Patient Access.

MOH (Ministry of Health and Prevention)

While MOH does not typically require module-specific Patient Access reports, the HIS must support:

  • Insurance & Coverage Statistics for Federal Facilities
  • Aggregated counts of insured vs self-pay encounters.
  • Breakdown by payer type (government vs private).
  • Fields: encounters.facility_id, eligibility_checks.payer_id, eligibility_responses.is_eligible.

  • Service Access & Equity Monitoring

  • Ability to report on financial counseling and charity care utilization:
    • financial_counseling_records.counseling_type, patient_decision
    • Link to billing discounts / charity write-offs (from billing module).

These reports should be exportable in CSV/Excel for MOH ad-hoc requests.

DOH (Abu Dhabi) – Malaffi / DOH eClaims Context

  • DOH eClaims Technical Denial Monitoring
  • Support extraction of authorization-related denial metrics by payer and service line for DOH eClaims submissions.
  • Fields: billing_claims.submission_channel = 'DOH_eClaims', claim_responses.denial_reason_code, prior_authorizations.auth_number.

  • Access & Utilization Statistics for DOH

  • Ability to provide:
    • Pre-authorization rates for high-cost imaging and procedures.
    • Referral patterns between providers in Abu Dhabi.
  • Aggregated by facility_id, department_id, payer_id.
  • DHA eClaimLink Eligibility & Auth Performance
  • Reports on:
    • Volume of eligibility checks via eClaimLink (eligibility_checks.request_source = 'DHA_eClaimLink').
    • Error codes and response times from payers.
  • Used internally to ensure compliance with DHA eClaimLink standards and SLAs.

  • NABIDH Data Completeness Support

  • While NABIDH focuses on clinical data, Patient Access must ensure:
    • Accurate patient identifiers and payer information are captured and available for NABIDH submissions.
  • Provide internal reports on missing Emirates ID, missing payer, or invalid coverage for Dubai facilities.

UAE PDPL (Federal Decree-Law No. 45/2021) – Data Protection

Patient Access handles sensitive personal and financial data; the HIS must support:

  1. Access Audit Report (Patient Access Module) - Who accessed or modified:

    • Insurance details
    • Cost estimates
    • Financial counseling records
    • Fields (from shared audit log):
    • audit_log.user_id, audit_log.action, audit_log.timestamp, audit_log.module = 'patient-access', audit_log.patient_id.
    • Used for PDPL data subject access requests and internal audits.
  2. Consent & Purpose-of-Use Reporting - Ability to show:

    • When consent for sharing data with payers was obtained (pre_registration_records.consent_obtained, timestamp).
    • Which payers received eligibility/auth data (via integration logs).
  3. Data Minimization & Retention - Reports to support retention policy reviews:

    • Age of eligibility_checks, eligibility_responses, cost_estimates, financial_counseling_records.
    • Used to plan anonymization or deletion in line with PDPL and facility policy.

NABIDH / Malaffi Compliance Metrics

Although Patient Access is not the primary source of clinical data, it underpins identity and encounter integrity for HIEs:

  • Identity & Coverage Consistency Report
  • Percentage of encounters with:
    • Valid Emirates ID format.
    • Primary payer recorded.
  • Supports NABIDH/Malaffi data quality programs.

  • Encounter Registration Timeliness

  • Time from appointment start to encounter creation and financial clearance.
  • Ensures encounters are ready for timely HIE submission.

All regulatory-related reports must:

  • Support export in CSV and PDF.
  • Allow filtering by facility and emirate (e.g., Dubai vs Abu Dhabi).
  • Be restricted to users with appropriate compliance/PDPL permissions.

Ad-Hoc Reporting

Available Data Fields (Key Domains)

Ad-hoc reporting tools should expose, at minimum, the following fields (subject to role-based access and PDPL controls):

Eligibility & Coverage

  • eligibility_checks.check_id
  • eligibility_checks.patient_id
  • eligibility_checks.encounter_id
  • eligibility_checks.payer_id
  • eligibility_checks.plan_id
  • eligibility_checks.member_id
  • eligibility_checks.check_datetime
  • eligibility_checks.check_type (real-time, batch, pre-reg, DOS)
  • eligibility_checks.request_source (DHA eClaimLink, DOH eClaims, direct API, manual)
  • eligibility_checks.status (success, failed, pending)
  • eligibility_responses.response_id
  • eligibility_responses.check_id
  • eligibility_responses.is_eligible
  • eligibility_responses.effective_date
  • eligibility_responses.termination_date
  • eligibility_responses.copay_amount
  • eligibility_responses.copay_percentage
  • eligibility_responses.deductible_total
  • eligibility_responses.deductible_met
  • eligibility_responses.coinsurance
  • eligibility_responses.annual_max
  • eligibility_responses.annual_max_remaining
  • eligibility_responses.payer_response_code

Prior Authorizations

  • prior_authorizations.auth_id
  • prior_authorizations.patient_id
  • prior_authorizations.encounter_id
  • prior_authorizations.payer_id
  • prior_authorizations.auth_number
  • prior_authorizations.service_codes
  • prior_authorizations.icd10_codes
  • prior_authorizations.auth_status
  • prior_authorizations.requested_date
  • prior_authorizations.approved_date
  • prior_authorizations.denied_date
  • prior_authorizations.valid_from
  • prior_authorizations.valid_to
  • prior_authorizations.approved_units
  • prior_authorizations.used_units
  • prior_authorizations.requesting_provider_id
  • prior_auth_requests.request_id
  • prior_auth_requests.submission_datetime
  • prior_auth_requests.submission_channel
  • prior_auth_requests.payer_response
  • prior_auth_requests.response_datetime
  • prior_auth_requests.peer_review_scheduled

Referrals

  • referrals.referral_id
  • referrals.patient_id
  • referrals.referring_provider_id
  • referrals.specialist_provider_id
  • referrals.payer_id
  • referrals.referral_number
  • referrals.service_type
  • referrals.authorized_visits
  • referrals.used_visits
  • referrals.valid_from
  • referrals.valid_to
  • referrals.status
  • referrals.icd10_code

Cost Estimates & Financial Counseling

  • cost_estimates.estimate_id
  • cost_estimates.patient_id
  • cost_estimates.encounter_id
  • cost_estimates.payer_id
  • cost_estimates.planned_cpt_codes
  • cost_estimates.estimated_charges
  • cost_estimates.estimated_payer_payment
  • cost_estimates.estimated_patient_responsibility
  • cost_estimates.deductible_applied
  • cost_estimates.copay_applied
  • cost_estimates.coinsurance_applied
  • cost_estimates.estimate_datetime
  • cost_estimates.acknowledged_by_patient
  • cost_estimates.valid_until
  • financial_counseling_records.record_id
  • financial_counseling_records.patient_id
  • financial_counseling_records.counselor_id
  • financial_counseling_records.session_datetime
  • financial_counseling_records.counseling_type
  • financial_counseling_records.patient_situation
  • financial_counseling_records.options_presented
  • financial_counseling_records.patient_decision
  • financial_counseling_records.payment_plan_id
  • financial_counseling_records.charity_application_id

Pre-Registration

  • pre_registration_records.prereg_id
  • pre_registration_records.patient_id
  • pre_registration_records.appointment_id
  • pre_registration_records.invitation_sent_datetime
  • pre_registration_records.completed_datetime
  • pre_registration_records.demographics_complete
  • pre_registration_records.insurance_verified
  • pre_registration_records.auth_verified
  • pre_registration_records.consent_obtained
  • pre_registration_records.status

Shared Dimensions (via FKs)

  • Facility, department, provider, payer, plan, encounter type, appointment type, etc., via joins to shared master tables.

Export Formats

Ad-hoc and standard reports must support:

  • CSV: For data analysis and integration with external tools.
  • Excel (XLSX): For finance and management users (pivot tables, charts).
  • PDF: For official reporting, sign-off, and archival (especially for regulatory and PDPL audit reports).
  • On-screen HTML: Interactive filtering, sorting, and drill-down.

All exports must:

  • Respect role-based access and PDPL minimization (e.g., ability to mask patient identifiers for non-clinical users).
  • Log export events in an audit log (user, timestamp, report, filter criteria).

Scheduled Report Delivery

The reporting engine should allow:

  • Scheduling Options
  • Daily, weekly, monthly, quarterly.
  • Specific day/time (with timezone awareness for UAE).
  • Delivery Channels
  • Secure email with link to report (no PHI in email body; PDPL-compliant).
  • Internal portal notifications.
  • Secure shared folder (e.g., SFTP) for finance/compliance.
  • Access Control
  • Only users with appropriate roles (e.g., view_analytics, rcm_reporting) can subscribe.
  • Subscription lists auditable for PDPL compliance.

Typical schedules:

  • Daily:
  • RPT-PAC-002 Eligibility Exceptions.
  • RPT-PAC-004 Pre-Registration Worklist.
  • Weekly:
  • RPT-PAC-003 Prior Auth Performance.
  • RPT-PAC-009 Payer Connectivity & Error Log.
  • Monthly:
  • RPT-PAC-001 KPI Dashboard snapshot (PDF).
  • RPT-PAC-005 Cost Estimate Accuracy.
  • RPT-PAC-006 Auth-Related Denials.
  • RPT-PAC-007 Referral Completion.
  • RPT-PAC-010 PDPL Access & Audit Log (for DPO).

All scheduled jobs must be monitored, with failure alerts sent to IT/BI support and Patient Access Manager.

content/rcm/patient-access/07-kpis-reports.md Generated 2026-02-20 22:54